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Abstract

An inert matrix fuel material based on yttria-stabilized cubic zirconia: ErxYyPuzZr1�x�y�zO2�ðxþ yÞ=2 (xþ y ¼ 0:15, z:
[0.05–0.15]) was proposed for burning excess plutonium in light water reactors. The studied inert matrix fuel is made

of cubic stabilized zirconia. The limited number of experimental thermal conductivity data justifies this formal and

intensive study. Approaches derived from Klemens theory were revisited and the derived conductivity model applied

for zirconia, accounting the effects of phononic scattering centers. The hyperbolic thermal conductivity trend with

temperature known for pure zirconia, is reduced by isotopes, impurities, dopants and oxygen vacancies, which act

as scattering centers and contribute to conductivity reduction to a flat plot with temperature for stabilized zirconia.

It is experimentally observed that the thermal conductivity derived from laser flash measurements for

ErxYyMzZr1�x�y�zO2�ðxþ yÞ=2 (with M¼Ce or Pu, z ¼ 0 or �0.1 and xþ y ¼ 0:15) is rather constant as a function
of temperature in the range 300–1000 K. The thermal conductivity was observed to depend on the concentration of

dopants such as YO1:5 and/or ErO1:5, CeO2 (analogous of PuO2) or PuO2. The bulk material conductivity of

Er0:05Y0:10Pu0:10Zr0:75O1:925 is about 2 Wm�1 K�1. In this study, the thermal conductivity data of both monoclinic and

stabilized cubic zirconia based IMF are tested with the model approach in order to understand the experimental data in

a semi-quantitative way.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Zirconia based inert matrix fuels (IMFs) are likely to

be an attractive fuel candidate for burning excess plu-

tonium in light water reactors. An IMF material based

on yttria-stabilized cubic zirconia YyZr1�yO2�y=2 has

been proposed by the author [1]. Such a cubic zirconia

has high melting point, low neutron capture cross-sec-

tion, compatibility with cladding, and good behaviour

under irradiation. Y2O3 acts as a stabilizer and Er2O3 is

suggested as additional stabilizer and as a burnable

poison. As a result, the composition of the cubic zironia

IMF is ErxYyPuzZr1�x�y�zO2�ðxþ yÞ=2 (with xþ y � 0:15)
[1].

The thermal conductivity is one of the most impor-

tant properties of nuclear fuels. For the cubic stabilized

zirconia as an IMF, a limited number of experimental

thermal conductivity data are available, but intensive

studies are in progress at the Paul Scherrer Institute [2]

and at the Japanese Atomic Energy Research Institute

[3]. Such data suggests that the thermal conductivity of

these yttria-stabilized zirconia does not depend on

temperature in the 300–1000 K range but depends on the

concentration of dopants such as YO1:5 and/or ErO1:5,

CeO2 (analogous of PuO2) or PuO2. The measurements
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of thermal conductivity have been performed for

ErxYyMzZr1�x�y�zO2�ðxþ yÞ=2 (with M¼Ce or Pu, z ¼ 0
or �0.1 and xþ y � 0:15). In this study, the thermal
conductivity of both monoclinic and stabilized cubic

zirconia is reconsidered in terms of formulation and

dataset based on calculation, and its dependence on

composition is discussed. Since the thermal conductivity

depends on macroscopic imperfections such as pores,

fissures, and microscopic or lattice defects, the modeling

can be split into the corresponding parts. The porosity

part may be accounted for example by the Loeb ap-

proximation. The model for the lattice thermal con-

ductivity is based on the Debye–Einstein theory of ionic

dielectics, and the Klemens approach for the heat con-

ductance [4]. The model considered phonon scattering

by matrix isotopes, impurities, dopants or additives and

oxygen vacancies randomly dispersed. The model testing

takes into account the recent values of the Debye tem-

perature measured for the considered phases [5]. The

approach is based on the previous studies such as the

calculation method adapted by Fukushima et al. [6] for

(Ln,Pu,U)O2�n solid solutions, where Ln is the lantha-

nide ion. This approach tested to calculate the thermal

conductivity of (Ln,Y,An,Zr)O2�n solid solution, where

An is the actinide ion, based on that of YyZr1�yO2�y=2
cubic zirconia, itself based on ZrO2 data. The thermal

conductivity model is tested for stabilized cubic zirconia

doped with PuO2 as a function of the temperature.

2. Review of relevant studies on thermal conductivity of

mixed oxides

It is useful to revise the formulation [4] and the da-

taset used in order to perform the thermal conductivity

calculation for MO2 and mixed oxides. In general, the

thermal conductivity j of solid is given for a Debye di-
electric solid by

j ¼ 1

Aþ B � T ¼ 1

Wl þ Wp
; ð1Þ

where A and B are constants. The constant A ð¼ WlÞ
corresponds to the thermal resistivity caused by

the phonon–lattice defect interactions. The term of

B � T ð¼ WpÞ corresponds to phonon–phonon interac-
tions (Umklapp process).

2.1. Modeling the effect of temperature

The intrinsic lattice resistivity Wp of dielectric solids
can be estimated from the following relationship [7,8]:

Wp ¼ B � T ¼ c2 � T
24
10

� �
� 41=3 � kB

h

� �3 �M � V 1=3 � T 3D
; ð2Þ

where kB is the Boltzmann�s constant, h the Plank�s
constant, V is the average atomic volume and M the

average atomic mass. B can be calculated using Eq. (2)
using both the Debye temperature TD and the Gr€uuneisen
constant c, which are two material related parameters.
Thus, the intrinsic thermal conductivity of MO2 pure

crystalline material follows an hyperbolic trend with the

temperature. Both Debye temperature and Gr€uuneisen
constant values are two relevant data since they are to

the power 3 and 2 in Eq. (2). In a metal dioxide there are

two types of atomic masses and the mass ratio should

satisfy the condition: MM=MO < 4 required to describe a
Debye solid. The expression (2) in (1) may then repro-

duce the lattice conductivity of the ionic solid above the

Debye temperature. However, to apply the theory, the

free pathway l calculated from the formula

j ¼ 1=3 � CV � q � �vv � l ð3Þ

with �vv the average phonon velocity, q the material

density and CV its specific isochor heat capacity, should

be larger than the size of the scattering centers.

The intrinsic lattice resistivity of pure MO2 may be

completed by a lattice defect term.

2.2. Modeling the effect of point defects

The lattice defect thermal resistivity of dielectric

solids is given by [9]

Wl ¼
p2 � V � TD
3 � �vv2 � h

X
i

Ci; ð4Þ

where Ci is a scattering cross-section parameter of the

phonons by point defect i (isotopes, impurities, dopants
and oxygen vacancies) and is approximately given by

[10]

Ci ¼ xi �
M �Mi

M

� �22
4 þ e � �rr � ri

�rr

 !235; ð5Þ

where xi and Mi are the atomic fraction and the mass of

the point defect i, respectively, M the average atomic

mass of the host lattice site, ri the atomic (ion) radius of
the point defect i in its own lattice, �rr the average atomic
radius of the compounds of host lattice and e a pa-
rameter representing the magnitude of the lattice strain

generated by the point defect. Abeles [10] explains that e
should be regarded as a phenomenological, adjustable

parameter.

Fukushima et al. [6] divided the term of Wi into two

items caused by different defects. It can be written as

Wl ¼ Wlð0Þ þ DWlðxÞ; ð6Þ

where Wlð0Þ is caused by the defects such as impurities
included in the sample, and DWlðxÞ is the additional one
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caused by interactions of solutes. According to Eq. (4),

DWlðxÞ can be expressed as follows:

DWlðxÞ ¼ C � DC; ð7Þ

where

C ¼ p2 � V � TD
3 � �vv2 � h ð8Þ

and DC is a difference between the value of
P

Ci for the

solvent and that for the solid solutions. It is necessary to

estimate TD and �vv for solid solutions to calculate the
lattice defect thermal resistivity.

2.3. The intrinsic lattice resistivity: comparing the models

The intrinsic lattice resistivity of dielectric solids ap-

plied by Gibby [8] is inspired by Leibfried–Sch€oomann
work [7]. Using Eq. (2), the intrinsic thermal conduc-

tivity jiGibby can be written as

jiGibby ¼
24
10

� �
� 41=3 � kB

h

� �3 �M � V 1=3 � T 3D
c2 � T : ð9Þ

The Gr€uuneisen parameter c can be expressed by the
following relation,

c ¼ VM � BT � b
CV

¼ 3 � VM � BT � a
CV

;

where b ¼ 3 � a, and VM is the molar volume, BT the bulk

modulus, b the coefficient of volumetric thermal expan-
sion and a the coefficient of linear thermal expansion.
An alternative to Eq. (9) was proposed by Klemens

[11,12]. According to his formulation, the intrinsic

thermal conductivity becomes

jiKlemens ¼
3

2 � c2

� �
� l � v2

N � xm

� �
� 1
T
; ð10Þ

where l is the shear modulus, v the transverse wave
speed, N the number of atoms per molecule i.e. 3 for

MO2, xm the Debye frequency of the acoustic branch. It

is given by xm ¼ xD=N 1=3, where xD is the �per atom�
Debye frequency. Furthermore, the relation between

Debye temperature and xD is written as TD ¼ h�
xD=ð2 � p � kBÞ.
Thus, if the transverse wave speed can be calculated,

the intrinsic thermal conductivity may be derived. Based

on the elasticity theory, the transverse wave speed of

phonon is given by v ¼
ffiffiffiffiffiffiffiffi
l=q

p
. Consequently, both shear

modulus and Debye temperature are required to calcu-

late Eq. (10).

The intrinsic thermal conductivities from both ap-

proaches should be formally equal since these expres-

sions are derived for perfect dielectric solids. The

relation between the Debye temperature and the average

phonon velocity is given by the Debye approximation

�vv ¼ ðð2 � p � kB � TDÞ=hÞ � d=ð6 � p2Þ1=3, where d is the av-

erage size of the molecule and d3 the volume per mole-
cule in the crystal. Focusing on difference in expression

of sound velocity, Eqs. (9) and (10) are re-written as

follows:

jiGibby ¼
0:30

c2T
� M

V
2=3

� �
� �vv3; ð11Þ

jiKlemens ¼
0:27

c2T
� M

V
2=3

� �
� m4

�vv

� �
; ð12Þ

where q ¼ M=V . For N ¼ 3, the ratio of jiGibby to jiKlemens

is given by

jiGibby

jiKlemens

¼ 0:30 � �vv
4

0:27 � v4 : ð13Þ

If the transverse wave speed is equal to that derived

by Debye approximation, the difference between these

thermal conductivities is estimated to be 10%.

3. Applying the models for zirconia and comparing

literature data

The dataset for zirconia used in the thermal con-

ductivity calculations are given in Table 1. Some values

given for monoclinic zirconia are less accurate since the

material is non-stabilized, not always ultra-pure or de-

fect-free. It must be remembered that any thermal

treatment above 1420 K yields phase transition. The

monoclinic unit cell (a ¼ 514:6 pm, b ¼ 521:3 pm,

c ¼ 531:1 pm, b ¼ 99:2�) passes then in a tetragonal cell
(a ¼ 515 pm, c ¼ 527 pm), which undergoes contraction
from a unit cell volume of 0.1407–0.1397 nm3 for the

monoclinic and tetragonal phases respectively. This

phase transition limits the preparation of non-stabilized

monoclinic zirconia. This also justifies the difficulty to

produce or find the pure defectless material. Conse-

quently, monoclinic zirconia samples are unlikely defect

free. The distortions in the lattice as identified by

EXAFS e.g. [13] yield phonon scattering centers and

affect all thermo-plastic properties.

3.1. Conductivity calculation for monoclinic zirconia

3.1.1. The case of pure monoclinic zirconia

The thermal conductivity data from the literature for

monoclinic zirconia are summarized as follow. For a

sample of one grain of non-stabilized zirconia the mea-

sure by Bisson et al. [16] gave 8.1 Wm�1 K�1 at RT. For

nano-particle material sintered at low temperature the

conductivity measured by Raghavan et al. [17] was

6 Wm�1 K�1 at RT and about 3.7 Wm�1 K�1 at 1000 K,

corresponding to A ¼ 9:87� 10�2 mKW�1 and

B ¼ 1:81� 10�4 mW�1. A sample of non-stabilized zir-
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conia with high density of dislocations and grain

boundaries (with 0.9 theoretical density (TD), and im-

purities e.g. 2 mol% Hf) was measured by Pouchon et al.

[18], j values of 2.7 Wm�1 K�1 are reported at RT.

Previous studies on zirconia samples estimated j of

about 2 Wm�1 K�1 where its temperature dependence

was relatively small [19], but, these values are for zir-

conia doped samples.

The intrinsic thermal conductivity given by Gibby�s
approach is estimated to be 30 Wm�1 K�1 at 500 K and

15 Wm�1 K�1 at 1000 K for B of 6.67� 10�5 mW�1.

Presently, B is about three times smaller that expected.
The Gr€uuneisen parameter c was 2.0 and the Debye
temperature TD was 500 K (average between our values
and that of Tojo et al. [15]) for these calculations. Such a

relatively large difference is caused by the difference in

expression of phonon velocity. The results obtained by

Klemens�s method is influenced by the transverse wave
speed of phonon. Calculations give v of 4200 m s�1 using
the shear modulus and the density of monoclinic zirco-

nia and �vv of 6500 m s�1 for TD of 590 K. The intrinsic
lattice resistivity of pure MO2 may be corrected by

the lattice defect term A, which would equal 8:53�
10�1 � ½0:536þ 3:7� 10�2 e
 mKW�1. Clearly with e ¼
0, A is still at least four times that determined experi-
mentally. Similar discrepancies between experimental

and theoretical A and B values are also reported for UO2
and PuO2 [6].

Simplifications and limitations on the use of the

formal model must be pointed out, which makes dis-

crepancies between experimental and theoretical values.

The expression (2) in (1) can reproduce the lattice con-

ductivity of the ionic solid above the Debye temperature.

Application of these formulae are only valid for perfect

crystals, which is far to be the case for monoclinic non-

stabilized zirconia. In zirconium dioxide the mass ratio

is MZr=MO � 5, which does not fully satisfy the condi-
tion required for Debye solid. In Eq. (2) both Debye

temperature and Gr€uuneisen constant values are two
relevant data since they are to the power 3 and 2. Fi-

nally, the phonon free pathway l calculated from Eq. (3)
with j ¼ 3 Wm�1 K�1, CV ¼ 480 J kg�1 K�1, �vv ¼ 6000
m s�1 and q ¼ 5850 kgm�3, is �0.5 nm and is of the

same order as the size of the scattering centers, which

makes application of Klemens theory somewhat inac-

curate.

Anyway, in a prospective way, calculations are fur-

ther carried out in order to assess the semi-quantitative

application of the Eq. (1) for zirconia using with its in-

trinsic conductivity.

3.1.2. Effect of lattice defects on thermal resistivity of

monoclinic zirconia

The lattice defect thermal resistivity can be expressed

by Eqs. (4) and (5). As cited in Ref. [11], the defects

scattering phonons should be considered to be the sub-

stituted atoms for host Zr atoms in a host lattice. For

the case of pure monoclinic zirconia, such a lattice defect

thermal resistivity is somewhat difficult to be calculated

using Eqs. (4) and (5). Several studies introduced the

constant term accounting for the thermal resistance re-

sulting from the other defect sources such as impurities

[4,9]. The introduced constant term was experimentally

determined by the thermal conductivity of the host lat-

tice such using the factor derived from Eq. (5). In order

to calculate this term of monoclinic zirconia, more reli-

able data of thermal conductivity are needed. Since the

thermal conductivity of monoclinic zirconia depends on

temperature [12], it is determined by both A and B values
in Eq. (1).

In order to investigate the effects of the lattice defects,

the contribution of the zirconium isotopes is calculated.

Table 1

Dataset for macroscopic properties of zirconia

Parameter Symbol Unit Value for ZrO2 (m) Values for (Y,Zr)O2�n
a(c) Ref.

Molecular weight M kgmol�1 123.22� 10�3 121.55� 10�3 [14]

Density q kgm�3 5.85� 103 5.95� 103 [14]

Molar volume VM m3 21.06� 10�6 20.43� 10�6 [14]

Average atomic volume V m3 1.166� 10�29 1.160� 10�29 [14]

Average atomic mass M kg 6.82� 10�26 6.90� 10�26 [14]

Linear thermal expansion coefficient a K�1 10� 10�6 10� 10�6 [21]

Isochor molar heat capacity CV Jmol�1 K�1 74.7b 72.8b [5]

Debye temperaturec TD K 590� 20 575� 50 [5]

Shear modulus l Pa 83� 109 79� 109 [24,36]

Bulk modulus BT Pa 201� 109 145� 109 [24,36]

Gr€uuneisen constant c – 2.0d 1.4 [24]

a e.g. for Y0:15Zr0:85O1:925.
b Theoretical value on Debye plateau.
cNote: TD data are model and temperature dependant e.g. Tojo et al. [15] TD ¼ 400–700 K.
dCalculated for BT ¼ 201 GPa.
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The natural abundance of zirconium isotopes are

51.45%, 11.22%, 17.15%, 17.38% and 2.8% for 90Zr,
91Zr, 92Zr, 94Zr and 96Zr, respectively. According to Eq.

(5), the contribution from the isotopic variation is esti-

mated to yield a C of 0.00034. The magnitude of this

value is very small, say negligible. In this calculation, the

contribution from the lattice strain is neglected.

Contamination with chemicals may contribute to the

lattice defect thermal resistivity. Without zirconia spe-

cific purification, Hf contamination is of the order of the

1–2 mol%. The lattice defect thermal resistivity due to

Hf contamination was estimated using Eq. (4) and (5)

with rHf4þ ¼ 78 pm and MHf ¼ 178:49 gmol�1. Also
here, the lattice strain contribution is neglected. The C
value of 0.818 mKW�1 for the monoclinic zirconia is

used. The results are shown in Table 2.

The values of C and increase of thermal conductivity
are almost proportional to the contamination of Hf. The

contribution from the Hf contamination is much larger

than that from isotopic effect of zirconium and is not

negligible.

3.2. Conductivity calculation for cubic zirconia

3.2.1. The case of pure cubic stabilized zirconia

As well known, addition of the 8 mol% Y2O3 in ZrO2
fully stabilizes zirconia in a (Y,Zr)O2�n cubic phase

(CSZ) at RT. Under the assumption that the thermal

and mechanical properties are nearly equal for zirconia

with 9.4–11.0 mol% Y2O3, the calculation of thermal

conductivity can progress. The calculated thermal con-

ductivity of (Y,Zr)O2�n may consequently be used for

the (Ln,Y,An,Zr)O2�n solid solutions.

In order to calculate the intrinsic lattice thermal

conductivity, the values of both c and TD for zirconia
with �10 mol% yttria are needed. Several researchers

investigated the thermophysical and mechanical prop-

erties of CSZ [20–23]. Kisi and Yuxiang gives c, l and
TD values [24]. But the value of TD is found to be higher
than that obtained by other experiments. So the value of

527 K is chosen for moderate TD [25]. Using c ¼ 1:37
[23] and TD ¼ 527 K [24], Gibby�s approach gives B of
2.08� 10�5 mW�1. For the Klemens�s theory, the value
of B is estimated to be 1.70� 10�4 mW�1 using l of

79 GPa [23]. The relatively large difference is caused by

the difference in expression of phonon velocity, as de-

scribed in Section 2. The Klemens�s approach gives the
transverse wave speed of 3500 m s�1 while Gibby�s ap-
proach gives the average phonon velocity of 5800 m s�1.

The effect of grain size in polycrystalline material is

supposed to have a marked effect on the conductivity. j
could theoretically be reduced vs its intrinsic values by

30–40% for 1 lm grains, 50% for 100 nm grains and 60%
for 10 nm grains [26]. This effect is not treated in this

paper since this correction is not verified experimentally

e.g. [17]. This is justified since for stabilized zirconia Eq.

(3) yields to a phonon pathway (�0.5 nm) of the order of
the scattering center sizes (�0.2 nm), which are much
smaller than the grain sizes.

3.2.2. Effect of lattice defects on thermal resistivity of

cubic zirconia

In order to estimated the lattice defect thermal re-

sistivity due to dopant atoms, the value of C has to be
calculated. The C value can be calculated by Eq. (7).

Using TD ¼ 527 K, the values of C are estimated to be
0.912 mKW�1 for �vv ¼ 5800 m s�1.
The thermal resistivity caused by dopant atoms is

given by Eq. (5). DC for (Y,Zr)O2�n solid solution is

written:

DC ¼
X
i

CiðssÞ

����� �
X
i

CiðZrO2Þ

�����
¼ xZr �M2

Zr þ xY �M2
Y

M
2

�����
"

� 3 �M2
Zr

ðMZr þ 2 �MOÞ2

�����
þ xO �M2

O

M
2

����� � 6 �M2
O

ðMZr þ 2 �MOÞ2

�����
#

þ e � xZr � r2Zr þ xY � r2Y
�rr2

�����
"

� 3 � r2Zr
ðrZr þ 2 � rOÞ2

�����
þ

xO � r2O þ xOV � r2OV
�rr2

����� � 6 � r2O
ðrZr þ 2 � rOÞ2

�����
#
; ð14Þ

where the subscript (ss) means the solid solution, and OV
means the oxygen vacancy. To calculated the DC, the ion
mass and radius are needed. Table 3 shows the values of

ion radius given by Shannon and Prewitt [27].

In order to determine the ion radius, the lattice pa-

rameter a for the cubic zirconia is used. Terblanche re-
ported the relation between the lattice parameter and

content of yttria as a function of temperature [28]. On

the other hand, the diagonal of the cell for the cubic

zirconia (fluorite structure) is given by e.g. [29]ffiffiffi
3

p

4
� aðY;ZrÞO2�n

¼ 3 � xZr � rZr þ 3 � xY � rY þ 3
2
� xO � rO

þ 3
2
� xOV � rOV : ð15Þ

Table 2

Hf contribution on resistivity

Hf fraction mol% Ca DW (mK�1 W�1)

0.0 0.000342 0.000280

0.5 0.004850 0.003970

1.0 0.009220 0.007540

1.5 0.013500 0.011000

2.0 0.017600 0.014400

aWithout lattice strain effect.
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Then, under the assumption that the radius of oxygen

vacancy is equal for zirconia with 10–30 mol% Y2O3, the

rOV is determined from fitting the lattice parameter given
by Eq. (15) to the measured lattice parameter. For the

hypostoichiometric oxide (Y,Zr)O2�n, the mean CN of

cations is 8–4. Considering the decrease of cation ion

radius with decrease of CN, the radius of oxygen va-

cancy is estimated to be 176 pm.

The value of e is determined as the adjustable pa-
rameter [8]. The thermal conductivities of cubic zirconia

with 10–30 mol% yttria were measured by Degueldre

et al. [3] and Pouchon et al. [2]. Fitting the data from

these references for the thermal resistivity written by Eq.

(14), the value e of 10� 2 is obtained as an adjustable
parameter. In Table 4, the scattering cross-sections and

thermal resistivities due to added yttria are summarized.

These thermal resistivities are calculated using e ¼ 10:4
and C ¼ 0:912 mKW�1.

Fig. 1 shows the thermal conductivities of cubic zir-

conia with 0–30 mol% Y2O3. This figure shows that the

thermal conductivity of yttria-stabilized cubic zirconia is

decreasing with the increase of yttria concentration.

Alternatively, the e parameter may be evaluated
using the following equation: e ¼ 32 � ð1þ 1:6 � cÞ2 [9].
With c ¼ 1:37, a value of 326 is obtained for the strain
parameter. This value is too large to express the thermal

conductivity of yttria-stabilized cubic zirconia since the

scattering cross-section parameters due to added yttria is

not so small.

Fig. 2 shows the calculated thermal conductivities for

yttria-stabilized zirconia doped with CeO2 and PuO2.

These calculations are performed for the zirconia with

additions of CeO2 or PuO2 yielding cubic phase mate-

rial. In these calculations, the thermal conductivity of

Y0:1Zr0:9O1:95 as intermediate material was used, and the

valence of Pu and Ce ions is assumed to be +4. In Table

5, the scattering cross-sections and thermal resistivities

due to added CeO2 and PuO2 are summarized. These

thermal resistivities are calculated using e ¼ 10:4 and
C ¼ 0:912 mKW�1. Both thermal conductivities of

cubic zirconia added with CeO2 or PuO2 decreases when

increasing their concentration. A stronger decrease of

thermal conductivity is observed for the cubic zirconia

by adding PuO2 compared to that obtained by adding

CeO2. This is the reason why the contribution to the

thermal resistivity is larger for heavier atomic mass also

enhancing the scattering cross-section.
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Fig. 1. Calculated intrinsic thermal conductivity of

YyZr1�yO2�y=2 as a function of temperature. Conditions: Debye

temperature TD 500 K and the Gr€uuneisen constant c 2.1.

Table 4

The scattering cross-sections DCM (M ¼ mass) and DCr (r ¼ radius) and thermal resistivities DW ¼ C � ðDCM þ e � DCrÞ due to yttria
fraction

Cubic zirconia M (gmol�1) �rr (pm) DCM DCr DW (mKW�1)

ZrO2 41.073 118.9 – – –

Y0:1Zr0:9O1:95 40.729 119.8 0.0186 0.00252 0.0409

Y0:2Zr0:8O1:90 40.385 120.7 0.0377 0.00472 0.0792

Y0:3Zr0:7O1:85 40.041 121.5 0.0571 0.00663 0.1150

Er0:1Zr0:9O1:95 43.341 119.7 0.1686 0.00269 0.1793

Er0:2Zr0:8O1:90 45.609 120.6 0.2959 0.00508 0.3181

Table 3

Atomic radii r (pm) of the ion components as a function of co-
ordination number (CN)

Ion CN

4 6 7 8

Zr4þ – 72.0 78.0 84.0

Y3þ – 90.0 96.0 101.9

Er3þ – 89.0 94.5 100.4

Ce4þ – 87.0 92.0 97.0

Pu4þ – 86.0 – 96.0

O2� 136.4 – – –
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4. New experimental results and discussion

The thermal conductivity is simply the product of the

density q, the specific heat capacity CV (intrinsic ther-

modynamic property, which can be estimated for ideal

solid solution as CV ¼
P

xi � CVi, with xi the molar
fraction of each components) and of the thermal diffu-

sivity D, which is experimentally determined, for exam-
ple, using the laser flash method.

j ¼ q � CV � D: ð16Þ

The thermal diffusivity of the studied samples was

measured as a function of the temperature. The samples

Er0:07Y0:10Ce0:15Zr0:68O1:913 (COP), Er0:04Y0:14Pu0:09Zr0:73-

O1:91 (ATT) and Er0:04Y0:14Pu0:08Zr0:74O1:91 (COP) were

prepared as reported earlier [30], (COP) referring to a

coprecipitation preparation and (ATT) to attrition mil-

ling production. The relative density was 0.900, 0.944 and

0.863 respectively and the grain size was order of 20 lm.
The tests were carried out by laser flash as described by

Parker et al. [31]. The 1 mm disk samples were coated

with C or W and the tests performed with temperature

ramp of 5–10 K min�1 and with measurements during

heating and cooling. The inverse of the diffusivity of Pu–

zirconia IMF followed a linear trend with temperature

in the range 400–2000 K (see Fig. 3).

The thermal conductivity of the (Ce/Pu)–IMF sam-

ples of composition ErxYyMzZr1�x�y�zO2�ðxþ yÞ=2 (with

M¼Ce or Pu, z ¼ 0 or �0.1 and xþ y ¼ 0:15) lies
between 2.7 and 1.7 WK�1 m�1 (see Fig. 4). Porosity,

which has a pronounced effect on the sample thermal

conductivity jg, was corrected using a simple correction

j ¼ jgð1� gÞ1:7 [32] and the bulk material conductivity
j is plotted as a function of temperature. These values
are much smaller than for pure dense zirconia, as re-

ported for the samples obtained by sintering nano-

phases [17]. This thermal conductivity is comparable to

that of urania. The additions of yttria, erbia and plu-

tonia required for the stabilisation of zirconia and the

safety in-pile, have a tremendous degrading effect on the

thermal conductivity of zirconia at low temperature.

The effect is comparable to that observed by the addition
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Fig. 2. Calculated intrinsic thermal conductivity of Yy(Ce/

Pu)zZr1�y�zO2�y=2 as a function of temperature. Conditions:

Debye temperature TD 500 K and the Gr€uuneisen constant c 2.1.

Table 5

The scattering cross-sections and thermal resistivities DW due to CeO2 or PuO2 addition

Cubic zirconia M (gmol�1) �rr (pm) DCM DCr DW (mKW�1)

Y0:1Zr0:9O1:95 40.729 119.8 – – –

Y0:1Ce0:05Zr0:85O1:95 41.544 120.0 0.0407 )0.00110 0.0267

Y0:1Ce0:10Zr0:80O1:95 42.359 120.2 0.0770 )0.00220 0.0494

Y0:1Ce0:15Zr0:75O1:95 43.174 120.5 0.1093 )0.00329 0.0684

Y0:1Ce0:20Zr0:70O1:95 43.989 120.7 0.1380 )0.00439 0.0841

Y0:1Pu0:05Zr0:85O1:95 43.242 120.0 0.2488 )0.00103 0.2170

Y0:1Pu0:10Zr0:80O1:95 45.755 120.2 0.4337 )0.00206 0.3760

Y0:1Pu0:15Zr0:75O1:95 48.268 120.4 0.5703 )0.00309 0.4910

Y0:1Pu0:20Zr0:70O1:95 50.781 120.6 0.6697 )0.00411 0.5720
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Fig. 3. Thermal diffusivity of (Er,Y,Pu,Zr)O2�n as a function of

temperature. Conditions: laser flash, 1-mm thick disk of sam-

ples Er0:04Y0:14Pu0:08Zr0:74O1:91 (COP), coated with C or W or

uncoated, temperature ramp 5–10 Kmin�1 with measurements

during heating and cooling temperature program. M for 106.
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of gadolinia to urania e.g. Hirai and Ishimoto [33] or by

doping urania with various tetra- or tri-valent oxides e.g.

Lemehov et al. [34]. These samples are gray due

to Pu(IV) presence and its potential of light absorp-

tion favoring energy transfer by phononic processes.

Er0:05Y0:10Ce0:10Zr0:75O1:925 is white, slightly yellow, and

does not absorb significantly light compared to the Pu

doped sample. This enables energy transfer by radiance

to play a role. This must be treated separately as a non-

intrinsic property. However, photonic conductivity does

not follow a jpht=T 3a�1 law [35] because the absorption a
is variable in the near-infrared. These IMF samples have

conductivities rather temperature invariant of about

2 Wm�1 K�1. If this experimental result cannot be for-

mally calculated (see Gibby [8]), it can be understood

using Eq. (1): for pure zirconia, the term B � T is pre-
dominant and the conductivity follows an hyperbolic

trend with temperature, while, when Y, Er and Pu/Ce

are added as dopant the extrinsic term A increases and
the thermal conductivity plot passes from the hyperbolic

form to a flat relationship. This was recently confirmed

by Wu et al. [37] for the ZrO2–GdO1:5 system, for which

conductivity is calculated in a semi-empirical way. The

only way to increase the conductivity would be to de-

crease the dopants (Y and Er) fraction.

5. Summary and concluding remarks

The study of the thermal conductivity of cubic sta-

bilized zirconia IMF of formula

ErxYyMzZr1�x�y�zO2�ðxþyÞ=2

(with M¼Ce or Pu, z ¼ 0 or �0.1 and xþ y � 0:15), has
been achieved. The limited number of data for these

quaternary zirconia�s justifies this formal and experi-
mental study. Both approaches (Klemens model and

that applied by Gibby) were revisited, compared and

found to result similar feature. The derived conductivity

models were applied for zirconia, accounting the effects

of isotopes, impurities and dopants. The model may be

only used in a semi-quantitative way and adjusting

corrections are needed.

It is experimentally observed that the thermal con-

ductivity is rather constant as a function of temperature

in the range 400–2000 K. This behaviour is justified

theoretically and verified semi-quantatively when ap-

plying the model. The thermal conductivity was ob-

served to depend on the concentration of dopants

such as YO1:5 and/or ErO1:5, CeO2 (analogous of PuO2)

or PuO2. In the lattice of zirconia, isotopes, impuri-

ties, dopants and oxygen vacancies act as phononic

scattering centers contributing to conductivity reduction

with regard to pure zirconia. The experimental conduc-

tivity of the Er0:05Y0:10Pu0:10Zr0:75O1:925 materials is about

2 Wm�1 K�1. The thermal conductivity of stabilized

cubic zirconia based IMF may be improved by using a

minimum of trivalent dopants (Er, Y), which is Pu

loading connected and may be by producing material

with large grains and very low porosity.

Since the thermal conductivity of a zirconia based

IMF is rather low, other fuel designs such as hollow

pellet may be suggested for optimal utilisation of the

fissile material in light water reactor. The solid solution

IMF may be utilised as hollow pellet. Similar calcula-

tions may be performed for other actinide doping in

zirconia, and for the utilisation of target for minor ac-

tinide incineration.
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